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We consider the application of the two-loop functional renormalization group �fRG� approach to study the
low-dimensional Hubbard model. This approach accounts for both the universal and nonuniversal contributions
to the RG flow. While the universal contributions were studied previously within the field-theoretical RG for
the one-dimensional Hubbard model with linearized electronic dispersion and the two-dimensional Hubbard
model with flat Fermi surface, the nonuniversal contributions to the flow of the vertices and susceptibilities
appear to be important at large momenta scales. The two-loop fRG approach is also applied to the two-
dimensional Hubbard model with a curved Fermi surface and the van Hove singularities near the Fermi level.
The vertices and susceptibilities in the end of the flow of the two-loop approach are suppressed in comparison
with both the one-loop approach with vertex projection and the modified one-loop approach with corrected
vertex projection errors. The results of the two-loop approach are closer to the results of one-loop approach
with the projected vertices, the difference of the results of one- and two-loop fRG approaches decreases when
going away from the van Hove band filling. The quasiparticle weight remains finite in two dimensions at not
too low temperatures above the paramagnetic ground state.
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I. INTRODUCTION

The discovery of high-Tc superconductors, which demon-
strate nontrivial properties in a broad temperature and con-
centration range, has dramatically increased interest to cor-
related low-dimensional systems, and investigation of these
systems have became a challenge for modern solid-state
physics. Later discovery of unconventional triplet supercon-
ductors �in particular Sr2RuO4� has attracted further attention
to possible instabilities of a Fermi-liquid state in the low-
dimensional systems due to electronic correlations. These
compounds stimulate theoretical interest to study the effect
of correlations on electronic and magnetic properties of low-
dimensional systems.

The common model which treats electronic correlations is
the one-band Hubbard model. At sufficiently large on-site
Coulomb repulsion U�W �W is the bandwidth� this model
describes the Mott metal-insulator transition. This transition
is an essentially nonperturbative phenomenon and is well
described by the dynamical mean-field theory,1 which con-
siders the limit of infinite number of dimensions and neglects
spatial correlations. However, even in the weak- and
intermediate-coupling regime U�W properties of the Hub-
bard model are nontrivial in two dimensions near some spe-
cial �van Hove �vH�� band fillings or Fermi surface nesting,
where magnetic and/or superconducting instabilities may
arise.2 The spatial correlations, not considered in the dynami-
cal mean-field theory, become important in the vicinity of the
corresponding quantum phase transitions. Therefore, the de-
velopment of methods, which are able to describe magnetic
or superconducting fluctuations, is of high interest.

While the one-dimensional �1D� Hubbard model is ex-
actly solvable by the Bethe ansatz and the phase diagram of
this model with linearized electronic dispersion was obtained
within the bosonization and field-theoretical renormalization
group methods,3 numerical or approximate analytical meth-

ods have to be used in higher dimensions. The applicability
of numerical methods �exact diagonalization, quantum
Monte Carlo, dynamical cluster approximations, etc.� which
treat spatial correlations is restricted by the cluster size
and/or not too low temperatures.

At the same time, there are a number of different �semi-�
analytical approximations which treat the Hubbard model in
the weak- and intermediate-coupling regime. The simplest is
the mean-field approximation which treats the electron-
electron interaction via some effective field applied to the
fermionic system.2 Regarding the stability of the paramag-
netic state this approach is essentially equivalent to the re-
quirement that in the absence of instabilities in the particle-
hole �ph� or particle-particle �pp� channel, the corresponding
susceptibilities in the random phase approximation �RPA� or
T-matrix approximation �TMA� �Ref. 4� remain positive and
finite. The corresponding electron-electron interaction vertex
irreducible in the ph or the pp channel is supposed to be
equal to the bare on-site Coulomb repulsion U in these ap-
proaches.

More complicated approaches account for the effect of
fluctuations. These approaches can be subdivided into two
classes: �i� approaches which consider the effect of the renor-
malization of the ph- or pp-irreducible electron-electron in-
teraction vertex and �ii� approaches which consider in addi-
tion to �i� the renormalization of the one-particle Green’s
functions. One of the approximations of the first class is the
combination of RPA and TMA, which was proposed to ac-
count for both the ph and the pp scattering.5,6 In particular,
one can use the RPA vertex �instead of the bare U� as the
pp-irreducible vertex in TMA,5 or—vice versa— the TMA
vertex, which is irreducible in particle-hole channel, instead
of the bare vertex in RPA.6 The two-particle self-consistent
�TPSC� approximation7 uses the RPA-type vertex with the
effective interaction Uef instead of the bare one; the Uef is
determined by the requirement of the fulfillment of sum
rules.
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The commonly used approximation of the class �ii� is the
fluctuation exchange �FLEX� approximation.8 This approxi-
mation uses the RPA interaction vertices but accounts for the
renormalization of the one-particle Green’s functions as well.
Although using RPA vertices in this approximation violates
Pauli principle �see, e.g., Refs. 7 and 9�, considering more
complex structure of the vertices beyond RPA allows to treat
self-energy and vertex corrections on the same foot. This is
done, in particular, in the parquet approach9–11 which consid-
ers the contribution of different channels of electron scatter-
ing and their mutual interplay in the interaction vertex.12

However, the practical application of this approach for sys-
tems with the dimensionality d�1 meets serious computa-
tional difficulties and was performed only in few cases.11,13

The above-mentioned approximations give a possibility to
treat spatial correlations of the Hubbard model in the weak-
and intermediate-coupling regime. However, the accuracy of
the results obtained within these approximations can be
hardly controlled. The recently proposed functional renor-
malization group �fRG� approaches14–20 use a different strat-
egy. Integrating out modes with quasiparticle �qp� energy
��k���, where � is the cutoff parameter, one obtains a �for-
mally exact� hierarchy of RG equations for the n-particle
interaction vertices. This hierarchy is usually truncated by
neglecting higher-order vertices. To leading �one-loop� order
these equations neglect the six-point vertex and describe the
renormalization of the two-particle electron-electron interac-
tion vertices only. Therefore the one-loop fRG approach be-
longs to approximations of class �i�. Unlike the RPA and
TMA, however, different electron scattering channels are
treated on the same footing within the fRG. In one dimension
this approach allows to reproduce the results obtained earlier
within the field-theoretical RG approach.21 The results for
the instabilities, flow of electron-electron interaction verti-
ces, and phase diagrams of the standard,15,17,18,20–22 as well
as the extended23 two-dimensional �2D� Hubbard model
were also obtained at one-loop order.

The self-energy effects, which are not included in the one-
loop calculations, can be consistently taken into account at
the two-loop order. In one dimension these effects are shown
to be crucially important to describe Luttinger liquid
behavior.3 The calculation of the scattering rates,18 quasipar-
ticle residues,24 and the electronic self-energy25,26 in two di-
mensions using vertices obtained in the one-loop approxima-
tion showed, however, that contrary to the 1D case the self-
energy effects in 2D are generally less important; they can
however lead to the pseudogap structures of the spectral
functions �see e.g., Refs 25 and 26�.

To estimate corrections to the one-loop approximation,
the full calculation of the two-loop contributions to the flow
of vertices is necessary. Contrary to the calculations at one-
loop order, the two-loop corrections account partly for the
frequency dependence of the vertices and their momentum
dependence beyond the projection to the Fermi surface.
Therefore, the two-loop calculations serve also as a test of
the importance of the frequency and momentum depen-
dences of the vertices. Finally, they provide information
about quasiparticle weight, damping, and interaction-induced
Fermi surface shifts.

Although the two-loop corrections were considered previ-
ously for 2D systems in Ref. 27 within the field-theoretical

renormalization group approach, the application of this ap-
proach is limited to nearly flat Fermi surfaces and the elec-
tronic dispersion linearized near the Fermi surface. The ad-
vantage of the functional renormalization group approach is
that it can be applied to both flat and curved Fermi surfaces
with or without van Hove singularities since this method
does not require universality of the scaling functions. The
applicability of this approach for calculation of the two-loop
corrections to scaling functions of the bosonic �4 model was
investigated in Ref. 28 where the need to account for the
momentum and frequency dependences of the vertices was
emphasized. The treatment of this dependence numerically
is, however, a rather difficult task.

In the present paper we use a slightly different method,
which allows us to avoid considering momentum and fre-
quency dependences of the higher-order vertices, calculate
the two-loop corrections, and investigate their influence on
the flow of the coupling constants, susceptibilities, and self-
energies of the Hubbard model. We use the momentum-
cutoff version of the fRG for the one-particle irreducible
�1PI� functions, which is applicable in the vicinity of antifer-
romagnetic �AF� or superconducting phase.

The plan of the paper is as follows. In Sec. II we intro-
duce and compare the one- and two-loop fRG approaches. In
Sec. III we apply the two-loop fRG approach to the 1D and
2D Hubbard models and investigate the flow of the interac-
tion vertices and susceptibilities in this approach. In the con-
clusion �Sec. IV�, we discuss results of the paper and outline
future perspectives of the method. The derivation of the two-
loop equations is presented in the Appendix.

II. THE MODEL AND THE TWO-LOOP FRG APPROACH

We consider the Hubbard model

H = − �
ij�

tijci�
† cj� + U�

i

ni↑ni↓ − � − 4t�n , �1�

where the hopping amplitude tij = t for nearest neighbor sites
i and j and tij =−t� for next-nearest-neighbor sites �t , t��0�;
� is the chemical potential, corresponding to the particle
number n. In momentum space Eq. �1� reads

H = �
k�

�kck�
† ck�

+
U

2N
�

k1k2k3k4

�
����

ck1�
† ck2��

† ck3��ck4�	k1+k2−k3−k4
, �2�

where the Kronecker 	 symbol ensures momentum conser-
vation, �k is the electronic dispersion, and N is the number of
sites.

To calculate physical properties of model �1� we apply the
fRG approach with a sharp momentum cutoff �see, e.g., Ref.
24�, which considers an effective action obtained by integrat-
ing out modes with the quasiparticle energy ��k���, with �
being the cutoff parameter. This procedure is especially con-
venient when there is no ferromagnetic instability developing
in the weak-coupling regime �in two dimensions this implies
t�
0.3t �see Refs. 20 and 29��. In the case of a ferromag-
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netic instability the contribution of small-momenta particle-
hole scattering which is not included in the momentum-
cutoff fRG approaches may become important already at
sufficiently large momenta scales;20,29 this case is not consid-
ered in the present paper. Among different versions of the
fRG approach �Polchinskii,14,15 Wick-ordered,16,17 or one-
particle irreducible �1PI� �Refs. 18, 19, and 24��, we use the
fRG approach for the 1PI functions, which is especially con-
venient for including the self-evergy effects. In this approach
the electron propagator at scale � has the form

G��k,i�n� =
����k� − ��

i�n − �k − ����k� − ��
��k,i�n�
, �3�

where 
��k , i�n� is the self-energy at the same scale; �n are
the fermionic Matsubara frequencies. For ���0
=max���k�� the internal one-particle Green’s functions in all
the diagrams are zero so that the renormalization of the
physical quantities is absent: the effective interaction V� co-
incides with the bare one and 
��k , i�n�=0. The self-energy

��k , i�n� as well as the electron-electron interaction vertex
V��k1 ,k2 ;k3 ,k4� ��k1, k2, k3, and k4 are the momenta and
frequencies of the incoming and outgoing electrons, ki

= �ki , i�n
�i��� at ���0 can be obtained by integration of the

corresponding flow equations.
At one-loop order five diagrams contribute to the renor-

malization of the electron-electron interaction vertex
V��k1 ,k2 ;k3 ,k4� and two diagrams to the self-energy

��k , i�n� �see Fig. 1�. The corresponding flow equations
can be written in the form �see Refs. 18 and 19�

d
�

d�
= V� � S�, �4a�

dV�

d�
= V� � �G� � S� + S� � G�� � V�, �4b�

where � is the short notation for the summation over
momentum-, frequency- and spin variables according to
standard diagrammatic rules �see diagrams of Fig. 1�. The
single-scale propagator S��k , i�n� is defined by

S��k,i�n� = −
	���k� − ��

i�n − �k − ����k� − ��
��k,i�n�
. �5�

Equation �4� should be solved with the initial conditions
V�0

=U and 
�0
=0. To demonstrate how the fRG �Eq. �4��

reproduce the perturbation theory results, it is helpful to ex-
pand their solution in the bare interaction U. To this end, we
solve them iteratively. Starting from the bare values of V and

 we obtain after one iteration the first-order result for the
self-energy and the second-order perturbation theory �SOPT�
result for the vertex


�
�1� = U Tr�G�

0 � ,

V�
�1� = U + U2�G�

0 � G�
0 � , �6�

where the index “0” stands for the bare Green’s functions
with 
=0. After the second iteration we have


�
�2�,1-loop = U Tr�G�

�1�� + U2G�
0 � G�

0 � G�
0 ,

V�
�2�,1-loop = U + U2�

�

�0

d���S��
�1�

� G��
�1� + G��

�1�
� S��

�1��

+ U3�G�
0 � G�

0 � G�
0 � G�

0 �ladder + U3�
�

�0

d��

�	�G��
0

� G��
0 �in �

d

d��
�G��

0
� G��

0 �ex

non-ladder

.

�7�

Here the G�1� and S�1� functions are calculated with self-
energy �6�, “ladder” and “nonladder” denote two different
kinds of diagrams �see Fig. 2�, and “in” and “ex” denote the
Green’s functions which belong to the internal and external
bubble in the nonladder diagrams, as shown in Fig. 2. The
integrands in the second and last lines do not form a total �
derivative, and therefore we do not obtain the exact third-
order perturbation theory �TOPT� result for the vertex. While
the integrand in the first line of the Eq. �7� can be changed to
form the total derivative by the replacement S�→dG� /d�,
which was shown in Ref. 30 to be equivalent to borrowing
some terms from the two-loop corrections to the vertex, cast-
ing the term in the third line of Eq. �7� to the form of the
total derivative requires full consideration of the two-loop
corrections.

The consideration above provides a definition of the
n-loop approximation as an approximation which correctly

k k k

k k

1 1 1

1 1

kk k
k k

k k

k
k k

k k

k k

k k k

k k

2 3 3

3 4

4 4 4

4 2

3 2 2

2 3

a) b)

FIG. 1. The diagrams for the �a� self-energy and �b� vertex flow
at the one-loop order. The solid lines correspond to the cut propa-
gator G�, the lines with dash to the single-scale propagator S�, and
the boxes to the vertices V�. Lines inside the box show the direction
of spin conservation.

kk 1
1

k

k

3

3

kk 2
2

k

k

4

4

inex

FIG. 2. Ladder-type �left� and nonladder �right� diagrams in the
third-order perturbation theory. Solid lines correspond to the bare
electronic propagator G0, boxes to the bare interaction U, and in
and ex denote internal and external bubble in the nonladder
diagrams.
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reproduces n-loop parts of the diagrams for the two-particle
interaction vertex and n+1-loop parts of the self-energy dia-
grams. In the presence of logarithmic divergencies �e.g., in
one dimension�, when G�

0 �G�
0 � ln�� /�� ���� is a small

parameter�, the terms �G��
0

�G��
0

�G��
0 � � �dG��

0 /d��� and
U3�G��

0
�G��

0 �ex�d�G��
0

�G��
0 �in /d�� which appear at the two-

loop order �see below� and are necessary to combine to the
total derivatives in the Eq. �7� can be neglected to leading
logarithmic order. This provides another more conventional
definition of the n-loop approximation as an approximation
which correctly treats the terms Um lnm−n�� /�� in the pertur-
bation series for the vertex �m�n�. Note, however, that in
two dimensions the bubbles G��

0
�G��

0 are either nondivergent
for arbitrary fillings or may contain squared logarithmical
divergencies for some special �van Hove� band fillings, and
the latter definition of the n-loop approximation cannot be
applied.

To go beyond the one-loop order of Eq. �3� one has to
take into account the contribution of the three-particle inter-
action vertex �see Refs. 18 and 19 and Appendix�. Generally,
this vertex generates contributions to the two-particle inter-
action vertex V with an arbitrary number of loops n�3.19 At
this stage two different approximations are possible: �a� keep
only contributions which are necessary to treat exactly dia-
grams with fixed number n of loops and �b� keep all the
contributions which are generated by an integration of the
equation for the n+1-particle vertex, neglecting n+2-particle
vertex. In the present paper we restrict ourselves to approxi-
mation �a�, i.e., consider only those contributions to RG flow
which are necessary to treat exactly the two-loop parts of the
diagrams.

At the two-loop order the flow equation for self-energy
�4� does not change while 32 new diagrams contribute to the
renormalization of the vertex �see Fig. 3�. The resulting two-
loop equations have the form �see Appendix for the deriva-
tion�

d
�

d�
= V� � S�, �8a�

dV�

d�
= V� � �G� � S� + S� � G�� � V�

+ S� � �
�

�0

d��V�� � G�� � V�� � G�� � V�� � S��.

�8b�

The two-loop terms in the Eq. �8� arise from the contribution
of six-point vertex. Following Refs. 24–26 and 31, two-loop
contributions to the self-energy �sunriselike diagrams� can be
obtained by reinserting the four-point vertex into Eq. �8a�
�see below�. Contrary to the one-loop approximation the fre-
quency dependence of the vertex becomes essential at the
two-loop order. This can be seen from the fact that to repro-
duce the TOPT result one needs to iterate Eq. �8b� twice. If
one neglects the frequency dependence of the vertices, Eq.
�8� fails to reproduce correct TOPT results. The necessity of
taking into account the frequency and momentum depen-

dence of the vertex was previously emphasized in the two-
loop calculation of the � function of �4 theory28 and the
self-energy calculation in the 2D Hubbard model.24–26,31

To avoid having explicitly the frequency- and momenta-
dependent vertices, we integrate Eq. �8b� formally and keep
frequency and momentum dependences coming from the
one-loop term only to obtain

V� = V̄� + 	V�,

	V� = �
�

�0

d���V�� � G�� � S�� � V��

− P̂�V�� � G�� � S�� � V���� , �9�

where V̄�= P̂V� and the operator P̂ projects the external fre-

FIG. 3. The diagrams for the contributions to the flow of the
vertex at the two-loop order in the �a� particle-particle and the �b�
particle-hole channels. The two of the three lines without dash cor-
respond to the G�� propagator and one to the S�� propagator �the
circle arrow with double dash denotes their permutations�. The line
with dash corresponds to the single-scale propagator S�. The other
notations are the same as in Fig. 1.
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quencies to zero and the external momenta to the Fermi sur-
face. Reinserting this vertex into the one-loop contributions
of Eq. �8� and using projected vertices in the two-loop con-
tributions, we obtain to linear order in 	V,

d
�

d�
= V̄� � S� + S� � �

�

�0

d���V̄�� � G�� � S�� � V̄��

− P̂�V̄�� � G�� � S�� � V̄���� , �10a�

dV̄�

d�
= P̂�V̄� � �G� � S�� � V̄� − V̄� � �G� � S�� � �V̄�

1L − V0�

+ V̄� � �G� � S�� � �
�

�0

d��V̄�� � G�� � S�� � V̄��

+ S� � �
�

�0

d��V̄�� � G�� � V̄�� � G�� � V̄�� � S��� ,

�10b�

where

V̄�
1L = V0 + P̂�

�

�0

d���V̄�� � G�� � S�� � V̄���

is the analog of the one-loop vertex calculated with the two-

loop vertices V̄��. After this reinsertion, only the projected

vertices V̄ enter Eq. �10�. While the last term in Eq. �10b�
accounts for the two-loop corrections to the flow, other inte-
gral contributions correct the effect of the vertex projection
in one-loop diagrams. In particular, for �-independent V and

 the last two terms in Eq. �10b� combine to a � derivative
of the corresponding two-loop diagram so that these equa-

tions with the initial condition V̄�0

1L = V̄�0
=V0
U, 
�0

=0

correctly reproduce the result of the TOPT32 after one itera-
tion. The two-loop fRG equation for self-energy �10a� is
identical to that investigated earlier with one-loop vertices.25

The flow of the susceptibilities is described by the equation,
similar to Eq. �10�,

d��

d�
= T� � �G� � S�� � T�, �11a�

dT�

d�
= P̂�T� � �G� � S�� � V̄� − T� � �G� � S�� � �V̄�

1L − V0�

+ T� � �G� � S�� � �
�

�0

d��V̄�� � G�� � S�� � V̄��

+ S� � �
�

�0

d��T�� � G�� � V̄�� � G�� � V̄�� � S��� ,

�11b�

with the initial condition ��0
=0 and T�0

is determined by the
symmetry of the order parameter, e.g., T�0

=1 for the antifer-
romagnetic and singlet superconducting �SSC� susceptibility,
T�0

�k�=cos ky −cos kx for the d-wave superconducting �dSC�
susceptibility etc.

Let us consider the local in � version of Eq. �10�, which

is obtained by the replacement V̄��→ V̄�, 
��→
�. This
replacement introduces corrections of the same order, which
are already neglected in the two-loop approximation and,
therefore, can be considered on the same level of an approxi-
mation. In this way we obtain

d
�

d�
= V̄� � S� + S� � V̄� � ��1 − P̂��G� � G��� � V̄�,

�12a�

dV̄�

d�
= P̂�V̄� �

d

d�
�G� � G�� � V̄� + V̄� � �G� � S�� � V̄� � ��1 − P̂��G� � G��� � V̄� + S� � V̄� � G� � V̄� � G� � V̄� � G�� .

�12b�

Eq. �12� has a similar form as the two-loop equations in the
field-theoretical approaches, e.g., for the 1D fermionic
systems3 and, therefore, can be used to make connection with

these approaches. The terms with the projection operator P̂
coming from Eq. �9� subtract the one-loop �ln2 in 1D case�
contributions from the third-order diagrams for the vertex.
The corresponding contribution to the self-energy �last term
in the first equation� is a frequency-independent constant,
which can be omitted. Contrary to field-theoretical ap-
proaches, Eqs. �12a� and �12b� account for both, regular and
singular terms in the perturbation expansion and are written

for the coupling constants themselves, not for their invariant
combinations with the self-energy.

To solve numerically Eq. �10� and �11�, or �12�, we use
the discretization of momentum space in two patches �L and
R� in one dimension and Np=24 patches in two dimensions
with the same patching scheme as proposed in Ref. 20. For
the frequency dependence of the self-energy we use N�

=100 frequencies i�i suitably chosen on the imaginary axis
�these frequencies do not have to coincide with the Matsub-

ara frequencies since for a frequency-independent V̄ the self-
energy is defined on the entire imaginary axis �cf. Ref. 25��.
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We account for the self-energy effects by expanding the self-
energy 
��i�� around �=0 and introducing Z factors

ZkF

� = �1 − � Im 
��kF,i��/����=0
−1 . �13�

The feedback of the imaginary part of the self-energy to the
flow of vertices is neglected. The Green’s functions in this
approximation take the form24

G��k,i�n� =
ZkF

� ����k� − ��

i�n − �k
,

S��k,i�n� = −
ZkF

� 	���k� − ��

i�n − �k
, �14�

where kF corresponds to the projection of the vector k to the
Fermi surface.

The derivative of the self-energy which enters Eq. �13� is
determined numerically from the values of the self-energy at
the first two frequencies i�1,2. Approximation �14� can be
applied only in the paramagnetic state without strong ex-
change and/or umklapp scattering �i.e., away from half filling
in one dimension and at not too low temperatures and not too
close to the van Hove band fillings in two dimensions�.
Above the antiferromagnetically ordered ground state the di-
vergence of the corresponding vertices leads to a pseudogap
structure of the self-energy and spectral functions.25,26 This
structure can be correctly described only with the frequency-
dependent self-energy and is not considered here. The fulfill-
ment of approximation �14� can be verified inspecting the
frequency dependence of self-energy �10a� or �12a� at the

imaginary axis during the flow and requiring that it is almost
linear in frequency at small �. The numerical checks show
that this is indeed the case in the parameter range considered
below. We also neglect the first and third terms in the flow
equations for self-energies �10� and �12� as responsible
purely for the deformation of the Fermi surface by the inter-
action. This deformation was found numerically to be small
in two dimensions at small next-nearest hopping t� �Ref. 18�
and can be treated accurately by introducing corresponding
counterterms.16,33,34

III. RESULTS

A. 1D case

First we consider the results for the 1D electronic disper-
sion,

�k = − 2t cos k − � . �15�

In this case we have only two patches �L and R� at kF
= �arccos�� /2�. After the projection to the Fermi points,
only four independent vertices remain: V1=V�L ,R ;R ,L�,
V2=V�L ,R ;L ,R�, V3=V�L ,L ;R ,R�, and V4=V�L ,L ;L ,L�
=V�R ,R ;R ,R�. With the linearization of dispersion �15� near
the Fermi points, the flow of these vertices in the two-loop
approximation is well studied in the field-theoretical
approach3 and it is described by the following equations:

dg1/dl =
1

�vF
g1

2 +
1

2�2vF
2 g1

2�g1 + g4� ,
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FIG. 4. �Color online� The flow of the �a� vertices, �b� the AF, and the SSC susceptibilities of the 1D Hubbard model within the nonlocal
�solid lines� and local �dot-dashed lines� two-loop approaches and the one-loop approach �dashed lines�. Insets show the flow of the invariant
coupling constants g1,2=Z2V1,2 and the quasiparticle residue Z, with dashed lines being the extrapolation of fRG results with gi=A
+B / �C+ln�t /���. The results of the solution of field-theoretical two-loop Eq. �16� with initial vertices, obtained in the fRG approach at the
scale �=e−4t �marked by arrow� are shown by bold lines with circles.
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dg2�/dl =
1

�vF
g3

2 +
1

2�2vF
2 g3

2�g1 − 2g2 − g4� ,

dg3/dl =
1

�vF
g2�g3 +

1

4�2vF
2 g3��g2��

2 + g3
2 − 2g2�g4� ,

dg4/dl =
3

4�2vF
2 �g2�g3

2 − g1
3� , �16�

d ln Z/dl =
1

4�2vF
2 �g1

2 − g1g2 + g2
2 + g3

2� , �17�

where gi=Z2Vi are the invariant coupling constants, g2�=g1
−2g2, vF=2t sin kF, and l=ln �. We emphasize once more
that the difference of Eqs. �12� and �16� is that the latter
accounts for the universal contributions to the flow of the
coupling constants only, while the former treats also the non-
universal contributions, e.g., connected with the nonlinearity
of the dispersion.

The result of the solution of Eq. �12� for g1= t, g2=2t,
g3=g4=�=0, and T=10−4t is presented in Fig. 4. Similar to
the field-theoretical approach3 and previous one-loop fRG
study,31 the quasiparticle residue Z and the vertex g1 asymp-
totically vanish in the limit l→�, while the vertex g2 ap-
proaches a constant value. To verify that the result of the
solution of Eq. �16� is indeed reproduced at ��1, we use

the result of integration of Eq. �11� at some cutoff parameter
�c=e−4t�1 as a starting condition for Eq. �16� and compare
the result of the solution of Eqs. �12� and �16� for ���c.
One can see that the results of the local two-loop fRG ap-
proach agree with the corresponding results of the field-
theoretical approach �Eq. �16��. At the same time, the results
of the solution of local and nonlocal fRG equations are dif-
ferent due to the nonuniversal initial part of the flow. We
have verified that this is mainly connected with the momen-
tum dependence of the Fermi velocity; the difference almost
disappears for the linearized version of dispersion �15�. Non-
local Eq. �10a� is expected to treat better the effect of the
nonlinearity of the dispersion; therefore, we consider only its
solution in the 2D case below.

B. 2D case

For the discussion of the results of fRG approach in 2D
case we also consider the solution of Eq. �10� without the
two-loop corrections �i.e., without the last term in the second
equation� to investigate how the one-loop flow changes due
to correction of the errors of vertex projections by the second
and third term in Eq. �10b�. The difference of the latter re-
sults from the one-loop results shows the effect of the vertex
projection on the renormalization group flows, while their
difference to the two-loop results shows the effect of the
two-loop corrections.

First we consider the results of the solution of Eq. �10� for
the dispersion

�k = − t�cos px + cos py� + t�cos px − cos py� − � . �18�

The corresponding Fermi surface has flat parts along the di-
rections �px� , �py�=arccos�−� /2�. The field-theoretical ap-
proach for a flat Fermi surface was applied earlier in Refs. 27
and 35. The results of the numerical solution of Eq. �10� for
�= t and U=7.81t are shown in Fig. 5. We choose this rela-
tively large value of the interaction U since it corresponds to
the value of the dimensionless coupling constant
U� / ��vF�=3 used in Refs. 27 and 35, where vF is the Fermi
velocity and � is the length of the Fermi surface flat parts
�vF=�4t2−�2 and �=2 arccos�−� / �2t�� for the dispersion
�18��; a larger value U� / ��vF�=10 was considered in Ref.
27. One can see that the vertices without the two-loop cor-
rections diverge at much larger energy scales compared to
the two-loop results in agreement with Refs. 27 and 35. The
scale of the vertex divergence in the one-loop approximation
with partly corrected projection errors �Eq. �10� without the
last term in the second equation� agrees with the result of the
one-loop field-theoretical approach �not having any projec-
tion errors� but is larger than the corresponding scale in one-
loop approach with vertex projection. The account of the
vertex corrections �without the self-energy effects� shifts the
scale of the divergence of the vertices almost to the scale of
the one-loop approach with vertex projection. Further ac-
count of the self-energy corrections shifts the scale of the
divergence of the vertices to a smaller scale than in the one-
loop approximation with vertex projection. At large � far
from the scale of the vertex divergence we obtain the behav-
ior of the Z factors which is similar to the 1D case �not

2 4 6
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FIG. 5. �Color online� The flow of the vertices g1

=V�1,12,12� and g2=V�1,12,12� of the 2D Hubbard model with
the flat Fermi surface in the 24-patch one-loop approach with vertex
projection �1L, dashed lines�, the one-loop approach with partly
corrected errors of the vertex projection �q1L, dot-dashed lines� and
the two-loop approach with account of Z factors �2Lz, solid lines�
and without Z factors �2L, dash-dot-dot lines�. The 1st and 12th
patches being closest to the centers of the opposite Fermi surface
sides.
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shown�. Very close to the scale of the vertex divergence the
Z factors are stronger suppressed, until the approximation of
Eq. �14� breaks down. The flow of the vertices and quasi-
particle weight in the two-loop approach agrees with the re-
sults of Refs. 27 and 35.

The functional renormalization group approach can be
further applied to the t− t� Hubbard model with the disper-
sion

�k = − 2t�cos px + cos py� + 4t��cos px cos py + 1� − � ,

�19�

where the conventional field-theoretical approach is not ap-
plicable due to the presence of squared logarithmic singulari-
ties in the perturbation series near van Hove band filling
��=0�. The results for the flow of vertices and susceptibili-
ties for t�=0.1t, U=2t, and the fillings close to vH band

-2 0 2 4 6
ln(t/Λ)

-4

0

4

8

g

2Lz
1L
q1L

g4

g1

g2

g3

(b)(a)

0

4

8

χ

-2 0 2 4 6
ln(t/Λ)

AF

dSC

F

-2 0 2 4 6
ln(t/Λ)

0

2

4

6

8

g

q1L
2Lz
1L

g4

g1

g2

g3

0

1

2

3

χ

-2 0 2 4 6
ln(t/Λ)

AF

dSC

F

(c) (d)

FIG. 6. �Color online� The flow of the �a� and �c� vertices g1=V�1,7 ,7�, g2=V�1,7 ,1�, g3=V�1,1 ,7�, and g4=V�1,1 ,1�, and �b� and �d�
the AF, dSC, the ferromagnetic �F� susceptibilities of the 2D t-t� Hubbard model with U=2t, t� / t=0.1, T=0.1t, �a� and �b� �=0.1t, and �c�
and �d� �=−0.1t in the 24-patch one- and two-loop fRG approaches. The first and seventh Fermi surface patches correspond to points,
closest to two different van Hove singularities. The solid lines in �b� and �d� correspond to the two-loop approach; the dashed lines to the
one-loop approach with projected vertices, the dot-dashed lines to the one-loop approach with partly corrected errors of the vertex projec-
tions. Other notations are the same as in Fig. 5.
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filling ��= �0.1t� are presented in Fig. 6. At �=0.1t �above
vH filling� the largest susceptibility is observed with respect
to the antiferromagnetic instability in both the one- and the
two-loop approaches. For this value of � and chosen tem-
perature T=0.1t the results for the susceptibilities in one- and
two-loop approach substantially differ. The antiferromag-
netic susceptibility in the end of the flow in the one-loop
approach with partly corrected errors of vertex projection
�Eq. �10� with omitted last term in the second equation� is
larger than the results of this approach with vertex projection
and deviates more from the two-loop results. Therefore, the
results of one-loop approach with vertex projection agree
better with the two-loop results, which is possibly due to
account of only universal terms of the flow in these ap-
proaches. For �=−0.1t �below vH filling� we observe the
same qualitative tendencies with smaller difference of the
results of one- and two-loop approaches. With decreasing
temperature, the superconducting instability becomes domi-
nating in this case �see below�.

The results for the flow of the vertices and susceptibilities
at the filling further from vH one ��=−0.5t� are shown in
Fig. 7. At this filling and not too low temperatures the anti-
ferromagnetic susceptibility is the largest one �not shown�,
but with decreasing temperature the d-wave superconducting
instability becomes the leading instability. Susceptibilities in
the one-loop approach with partial correction of vertex pro-
jection errors are larger than the one- and the two-loop ap-
proaches. The susceptibilities in the end of the flow of one-
and two-loop approaches are, however, closer to each other
than in the above considered case �=−0.1t.

The calculated temperature dependences of the suscepti-
bilities for antiferromagnetic and superconducting instabili-
ties, as well as Z factors for �= �0.1t, are shown in Fig. 8.
At �=0.1t we observe a maximum of the antiferromagnetic

susceptibility in the two-loop approach, while the corre-
sponding susceptibility in the one-loop approach diverges
with decreasing temperature �Fig. 8�a��. More generally, we
find that the divergence of the vertices �and susceptibilities�
is strongly suppressed in the two-loop approach. This diver-
gence is not, however, fully removed since for smaller
��0.08 we find again the possibility of the antiferromag-
netic ground state in the two-loop approach. At �=−0.1t the
antiferromagnetic susceptibility also has a maximum at some
temperature and then decreases with decreasing T �Fig. 8�b��,
while the superconducting susceptibility increases, showing
the possibility of the superconducting ground state in both
one- and two-loop approaches. The increase of �dSC in the
one-loop approach is again more pronounced than in the
two-loop approach so that the temperature where the suscep-
tibility diverges in the two-loop approach is expected to be
much smaller than in the one-loop approach. The Z factors
decrease almost linearly with ln�t /T� at intermediate tem-
peratures, but below the temperature, where the maximum of
the susceptibility is reached, their temperature dependence
becomes linear in T and therefore ZkF

are not expected there-
fore to vanish at lower temperatures. We have also verified
during the calculations that the imaginary part of the self-
energy remains as linear function of � at small imaginary
frequencies.36

In Fig. 9 we summarize the results for the qp damping
�kF

=−Im 
�kF ,0� and the Fermi surface shift Re 
�kF ,0�
estimated at different Fermi surface points in the end of the
two-loop fRG flow. The qp damping depends almost linearly
on temperature at not too low temperatures; this dependence
becomes quadratic at low T. The observed linear dependence
of the scattering rates at not too low temperatures may be
due to closeness to the antiferromagnetic quantum critical
point; more detailed investigations of this dependence are,
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FIG. 7. �Color online� The flow of the �a� the vertices and the �b� the susceptibilities of the 2D t-t� Hubbard model, U=2t, t� / t=0.1,
�=−0.5t, and T=0.025t in the 24-patch one- and two-loop fRG approaches. The notations are the same as in Fig. 6.
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however, required. At the same time, the quadratic tempera-
ture dependence at low temperatures supports the Fermi-
liquid picture in this temperature range above the paramag-
netic ground state. The Fermi surface shift contributions are
small and negative for ��0. For ��0 the Fermi surface
shifts have opposite signs at the point closest to the �� ,0�
point and to the diagonal, leading therefore to small defor-
mation of the Fermi surface, which makes it flatter.

IV. DISCUSSION AND CONCLUSIONS

We have considered the effect of the two-loop corrections
on the fRG flow. In the 1D case we find that the nonuniversal
corrections contribute to the flow at large momenta scales,
while at small momentum scales we have recovered the re-
sults obtained from the field-theoretical RG approach. For
the 2D case with flat Fermi surface we also find good agree-
ment with the previous results of the field-theoretical RG.
The fRG approach was applied further to the case of curved
Fermi surface without nesting, where we obtained the flow
of the vertices and susceptibilities at the two-loop level.

In two dimensions the two-loop corrections do not change
the leading instability but may lead to a slight shift of the
phase boundaries in comparison with the previous one-loop
analysis. The difference of the two-loop results and the one-
loop results with projected vertices in two dimensions is
smaller than to the one-loop results with partly corrected
projection errors and decreases going away from the van
Hove band filling. Therefore, the commonly used one-loop
fRG approach with projected vertices serves as a good start-
ing point for calculating higher-loop corrections.

We have also considered the flow of the qp spectral
weight, the qp damping, and the Fermi surface shift. In
agreement with earlier studies, for curved Fermi surface and

not too low temperatures in two dimensions we obtain the qp
weight Z�0.9 so that the quasiparticles remain well defined
during the fRG flow. The qp damping and estimated Fermi
surface shifts are also numerically small. At the temperature
close to the antiferromagnetic instability the spectral weight
is suppressed and the pseudogap is formed, the description of
this regime in the two-loop approach is, however, left beyond
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the scope of the present paper because of the necessity of
considering the frequency dependence of the self-energy �see
e.g., Refs. 25 and 26�.

Possible future applications of the method would be its
implementation within the temperature-cutoff fRG scheme,20

where the two-loop corrections are expected to be smaller
than for momentum cutoff due to better treatment of degrees
of freedom with different excitation energy. The calculation
of the two-loop corrections for the temperature cutoff is,
however, a more difficult task since it requires more intense
numerical calculations caused by the smoothness of the cut-
off. Another possible extension of the method would include
consideration of the frequency dependence of the self-energy
and/or vertices, which also has to be performed.
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APPENDIX: DERIVATION OF THE TWO-LOOP FRG
EQUATIONS

In this Appendix we consider the derivation of the two-
loop RG equations. We use the notations of Refs. 18 and 19,
which considered the 1PI RG equations for the terms of the
expansion of the 1PI generating functional in fermionic field,

����� = �
m�0

��
�m����

where ��X� are fermionic fields and

X = �x,�,�, �� �A1�

is the short notation for the space, time, spin, and charge
variables �the � sign corresponds to the incoming and the
outgoing particles, respectively�. At the two-loop order the
hierarchy of RG equations for the 1PI functions is truncated
at the three-particle vertex and has the form18,19

�̇�
�2���� = ��,Q�� +

1

2
Tr�S��̃�

�2�� ,

�̇�
�4���� =

1

2
Tr�S��̃�

�4�� −
1

2
Tr�S��̃�

�2�G��̃�
�2�� ,

�̇�
�6���� = −

1

2
Tr�S��̃�

�4�G��̃�
�2� + S��̃�

�2�G��̃�
�4��

+
1

2
Tr�S��̃�

�2�G��̃�
�2�G��̃�

�2�� + O���
�8�� , �A2�

where

�̃�
�m��X,Y,�� =

	

	��X�
	

	��Y�
��

�m+2���� . �A3�

The trace is taken with respect to X-variables and dots denote
derivatives with respect to �.

For practical calculations the vertices ��
�m���� are ex-

pressed explicitly through the � fields as

��
�m���� =

1

m!�m � dXm�m���X���X1� . . . ��Xm�

�A4a�

and

�̃�
�m��X,Y,�� =

1

m!
� dmX��m+2���X,Y,X����X1�� . . . ��Xm� � .

�A4b�

In these notations the RG Eq. �12� reads as

�̇2���X� =
1

2
� d2Y�4���X,Y�S��Y� , �A5a�

�̇4���X� =
1

2
� d2Y�6���X,Y�S��Y� −

1

2
� d4YB��X,Y�L��Y� ,

�A5b�

�̇6���X� =
1

2
� d6YD��X,Y�M��Y� −

1

2
� d4YE��X,Y�L��Y� ,

�A5c�

where

L��Y� = S��Y1,Y2�G��Y3,Y4� + G��Y1,Y2�S��Y3,Y4� ,

�A6�

B��X,Y� = �4���X1X2;Y2,Y3��4���X3X4;Y4,Y1�

− �4���X1X3;Y2,Y3��4���X2X4;Y4,Y1�

+ �4���X1X4;Y2,Y3��4���X2X3;Y4,Y1� ,

�A7�

and

M��Y� = S��Y1,Y2�G��Y3,Y4�G��Y5,Y6�

+ G��Y1,Y2�S��Y3,Y4�G��Y5,Y6�

+ G��Y1,Y2�G��Y3,Y4�S��Y5,Y6� , �A8�

D��X,Y� = �4���X1,X2;Y2Y3��4���X3X4;Y4Y5�

��4���X5X6;Y6Y!� + 14 permutations,

�A9�

E��X,Y� = �4���X1X2;Y2Y3��6���X3X4X5X6;Y4Y1�

+ 14 permutations, �A10�

As discussed in main text, in the present paper we con-
sider the expansion in the number of loops rather than in
effective vertices. Iterating Eq. �A5c� for ��6�, one can easily
see that the first term in this equation corresponds to the
three-loop contribution to ��4�. Therefore, in the following
we neglect this term. Due to this neglect, Eq. �A5c� can be
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integrated analytically. Substituting the result into Eq. �A5b�
we obtain

�̇2���X� =
1

2
� d2Y�4���X,Y�S��Y� ,

�̇4���X� =
1

4
�

�

�0

d��� d2Y� d6Y�S��Y�M��Y��

�D���X,Y�,Y�� −
1

2
� d4YL��Y�B��X,Y� .

�A11�

This substitution considerably simplifies the numerical solu-
tion of the equations since one has to consider the vertices �2
and �4 only.

Introducing the self-energy and two-particle irreducible
vertex by


��1,�2� = �2���1,↑,+ �,��2,↑,− �� ,

V��1�2;�3�4� = �4���1,↑,+ �,��2,↓,+ �,��3,↑,− �,��4,↓,− �� ,

�A12�

where �i= �xi ,�i� and the Fourier transformed quantities


�k� =� d2�
��1,�2�ei��1−�2�k,

V�k1k2;k3k4� =� d4�V��1�2;�3�4�ei�1k1+i�2k2−i�3k3−i�4k4,

�A13�

where ki= �ki , i�n
�i�� and exploiting charge-, spin-, and trans-

lational invariance in the same way as in Refs. 18 and 19 we
obtain Eqs. �A5a�–�A5c� of the paper.

Similar derivation can be performed for susceptibilities.
Following Ref. 19 we introduce vertices ��

�m,n� where m re-
fers to the number of boson lines and n to the number of
fermion lines, which enter or go out of the vertex. The equa-
tions for the vertices ��

�m,n� read

�̇�
�2,0���� =

1

2
Tr�S��̃�

�1,0�G��̃�
�1,0�G�� , �A14�

�̇�
�1,2���� = −

1

2
Tr�S��̃�

�1,2�� +
1

2
Tr�S��̃�

�1,0�G��̃�
�0,2�� ,

�A15�

�̇�
�1,4���� = −

1

2
Tr�S��̃�

�1,4�� +
1

2
Tr�S��̃�

�1,0�G��̃�
�0,4��

+
1

2
Tr�S��̃�

�1,2�G��̃�
�0,2��

+
1

2
Tr�S��̃�

�1,0�G��̃�
�0,2�G��̃�

�0,2�� . �A16�

Expanding again ��m,n���� in �, neglecting the first three
terms in the equation for �̇�

�1,4���� as corresponding to the
higher-loop order, and substituting the result for �̇�

�1,4���� in
the equation for �̇�

�1,2����, we obtain

�̇�1,0����X,X�� =� d4YL��Y���1,2����X,Y2,Y3���1,2�

����X�,Y4,Y1� , �A17�

�̇�1,2����X,X�� =
1

4
�

�

�0

d��� d2Y� d6Y�S��Y�M��Y��

�D̃��X,�X�,Y�,Y��

−
1

2
� d4YL��Y�B̃��X,X�,Y� , �A18�

where

B̃��X,X�,Y� = ��1,2����X;Y2,Y3��4���X1�X2�;Y4,Y1� ,

�A19�

D̃��X,X�,Y� = ��1,2����X;Y2Y3��4���X1�X2�;Y4Y5�

��4���X3�X4�;Y6Y!� + permutations �X�� ,

�A20�
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